
Abstract. The impact of two landmark papers by
Edwards and de Gennes on the ®eld of polymer physics
is highlighted.
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A major advance in the physics of polymers occurred in
1949 when Flory [1] provided a simple but profound
argument for the swelling (compared to the ideal chain
size) of ¯exible polymer chains due to excluded-volume
interactions. In essence, the Flory result for the depen-
dence of the radius of gyration, Rg, on the degree of
polymerization, N , is obtained by minimizing the elastic
energy (due to chain connectivity) and the repulsive
energy arising from the volume excluded by a given
monomer for all other monomers. The resulting predic-
tion for the exponent, m, de®ned by Rg � aN m is
remarkably accurate in all space dimensions, d. For all
practical purposes the Flory result for m � 3

d�2 may be
considered exact [2]. Similarly, the Flory argument is
also found to be nearly exact for describing sizes of D-
dimensional objects embedded in d spatial dimensions,
such as tethered membranes with D � 2 [3]. For
polymers D � 1.

A fundamental understanding of the reasons for the
success of the theory due to Flory is still lacking. In an
attempt to derive the Flory exponent Edwards proposed
a model for polymers that bears his name in 1965 [4].
This paper brought to bear, for the ®rst time, methods of
functional integrals and many-body theory on problems
in polymer physics. Edwards proposed a very simple
form for the short-range repulsive potential describing
the interactions between the monomers. He suggested
replacing the actual potential by td�r�s� ÿ r�s0��, where t
is the strength of the excluded-volume interactions, r�s�
is a path of the polymer chain and s and s0 are the po-
sitions of two monomers along the positions of the
chain. The use of the d function pseudopotential should

not (see later) a�ect the long-wavelength properties of
the polymer chain. With this replacement Edwards for-
mally showed that polymer statistics boils down to
summing over all possible paths weighted by the Ham-
iltonian given by the sum of the ``kinetic energy'' (rep-
resenting chain connectivity) and the pseudopotential.
The resulting path integral is non-Markovian, which is a
re¯ection of the nature of the excluded-volume interac-
tions. The formal analogy to the path integral allowed
the use of many approximations devised in the context
of quantum mechanics to problems in polymers.

Several studies utilizing the Edwards model for
polymers followed [5]. In addition, using enumerations
of self-avoiding walks using lattice models [6] and
through the ingenious use of exact relations for Ising
models [7] many new results for polymer statistics were
obtained; however, an understanding of the varied uni-
versal behavior of polymer solutions was lacking. This
state of a�airs in polymer physics was to change dra-
matically after the profound discovery by de Gennes,
who showed a connection between polymer statistics and
phase transitions in 1972 [8]. This short and lucid paper
followed right at the heels of the discovery of the
renormalization group in the context of second-order
phase transitions. de Gennes showed that the n-vector
magnetic spin problem with n � 0 is equivalent to the
excluded-volume problem considered by Flory [1] and
formalized in terms of path integral methods by Ed-
wards [4]. The connection between the excluded-volume
problem and phase transitions also clari®ed the reasons
for the independence of the values of m on the details of
the interaction potentials as long as they are short ran-
ged. This, in retrospect, justi®ed the Edwards choice of
delta function interaction between two monomer seg-
ments. With this profound observation the entire ma-
chinery developed for understanding critical phenomena
could be imported to obtain a vast number of new re-
sults. Thus, the concept of scaling was born in polymer
physics and it continues to dominate the thinking of
many scientists in this area.

The marriage of the Edwards model and de Gennes'
observation brought an onslaught of several ®eld theo-
retical methods to derive various scaling laws describing
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the static properties of dilute and semidilute polymers
solutions. The Edwards model was also generalized to
poor solvent conditions so that polymer collapse could
be described. These developments are summarized in a
beautiful monograph by des Cloizeaux and Jannink [9].
It is fair to say that these two landmarks in polymer
physics have enabled us to understand many structural
aspects of polymers in solution.

There still are challenges which have come about in
extending the Edwards model to tethered membranes
�D � 2� [3]. The demonstration of the renormalizability
of the resulting model is a topic of current research [10].
In this context there does not appear to be an equivalent
spin model which describes self-avoidance in such ob-
jects. Further extension of these models to membranes
and charged species is expected to be an important
problem in the general area of soft-condensed-matter
physics. A perusal of the literature on these topics is
su�cient to appreciate the deep in¯uence of the two
landmark papers [4, 8] on polymer physics.
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